Directed assembly of abiotic catalysts onto biological redox protein frameworks is of interest as an approach for the synthesis of biohybrid catalysts that combine features of both synthetic and biological materials. In this report, we provide a multiscale characterization of the platinum nanoparticle (NP) hydrogen-evolving catalysts that are assembled by light-driven reductive precipitation of platinum from an aqueous salt solution onto the photosystem I protein (PSI), isolated from cyanobacteria as trimeric PSI. The resulting PSI-NP assemblies were analyzed using a combination of X-ray energy-dispersive spectroscopy (XEDS), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), small-angle X-ray scattering (SAXS), and high-energy X-ray scattering with atomic pair distribution function (PDF) analyses.
View Article and Find Full Text PDFProgressive forms of interstitial lung diseases, including idiopathic pulmonary fibrosis (IPF), are deadly disorders lacking non-invasive biomarkers for assessment of early disease activity, which presents a major obstacle in disease management. Excessive extracellular matrix (ECM) deposition is a hallmark of these disorders, with fibronectin being an abundant ECM glycoprotein that is highly upregulated in early fibrosis and serves as a scaffold for the deposition of other matrix proteins. Due to its role in active fibrosis, we are targeting fibronectin as a biomarker of early lung fibrosis disease activity via the PEGylated fibronectin-binding polypeptide (PEG-FUD).
View Article and Find Full Text PDFThe SiO/graphite composite is recognized as a promising anode material for lithium-ion batteries (LIBs), owing to the high theoretical capacity of SiO combined with the excellent stability of graphite. However, the inherent disadvantage of volume expansion in silicon-based anodes places significant challenges on the solid electrolyte interphase (SEI) and severely degrades the electrochemical performance. Rational formulation of electrolyte, including its additives, is crucial in accommodating and optimizing the composition of the SEI and enhancing the cell performance.
View Article and Find Full Text PDFCarbon dot-based nanozymes have gained significant attention, but their application in dye degradation remains limited due to low activity and challenges in recovery and reuse. To overcome these limitations, high peroxidase-active Co-doped carbon dots (CoCDs) with surface amines were synthesized via hydrothermal method and immobilized onto TEMPO-oxidized cellulose nanofibrils (TOCNF) aerogels using EDC/NHS coupling. For the first time, this study investigates the dye degradation efficiency of CDs nanozyme.
View Article and Find Full Text PDFBackground: Although kidney biopsy is definitive for the diagnosis of acute interstitial nephritis (AIN) and acute tubular necrosis (ATN), its invasiveness limits its use. We aimed to identify urine biomarkers for differentiating AIN and ATN and to predict the response of patients with AIN to steroid treatment.
Methods: In this prospective cohort study, biopsy-proven ATN ( = 34) and AIN ( = 55) were included.