Publications by authors named "G Y Choe"

Peripheral nerve injuries impair quality of life due to pain and loss of sensory and motor functions. Current treatments like autografts and nerve guidance conduits (NGCs) have limitations in functional restoration. Luminal fillers can enhance the effectiveness of NGCs by providing beneficial intraneural environments.

View Article and Find Full Text PDF

Next-generation sequencing (NGS) cancer profiling has gained traction in routine clinical practice in South Korea. Here, we evaluated the use of NGS testing and genomically-matched therapies for patients with advanced solid tumors in a real-world clinical practice. We analyzed results from NGS cancer panel tests (SNUBH pan-cancer version 2) ordered from June 2019 to June 2020.

View Article and Find Full Text PDF

Currently, it is a significant challenge to achieve long-term cyclability and fast chargeability in lithium-ion batteries, especially for the Ni-based oxide cathode, due to severe chemo-mechanical degradation. Despite its importance, the fast charging long-term cycling behaviour is not well understood. Therefore, we comprehensively evaluate the feasibility of fast charging applications for Co-free layered oxide cathodes, with a focus on the extractable capacity and cyclability.

View Article and Find Full Text PDF

Diffuse midline gliomas with H3 K27-alteration (DMGH3) are lethal and inoperable brain tumors. Although DMGH3s mainly occur in pediatric patients, they have also occurred in adult patients. This study aimed to analyze the clinicopathological significance of targetable genetic alterations in non-pediatric DMGH3.

View Article and Find Full Text PDF

Electrovibration haptic technology, which provides tactile feedback to users by swiping the surface with a finger via electroadhesion, shows promise as a haptic feedback platform for displays owing to its simple structure, ease of integration with existing displays, and simple driving mechanism. However, without electrical grounding on a user's body, the frequent requirement of a high driving voltage near 50 V limits the use of electrovibration haptic technology in practical display applications. This study introduces materials and fabrication strategies that considerably reduce the driving voltage.

View Article and Find Full Text PDF