Publications by authors named "G Woronoff"

We demonstrate a portable, compact system to perform absorption-based enzymatic assays at a visible wavelength of 639 nm on a photonic waveguide-based sensor chip, suitable for lab-on-a-chip applications. The photonic design and fabrication of the sensor are described, and a detailed overview of the portable measurement system is presented. In this publication, we use an integrated photonic waveguide-based absorbance sensor to run a full enzymatic assay.

View Article and Find Full Text PDF

Sustained autocatalysis coupled to compartment growth and division is a key step in the origin of life, but an experimental demonstration of this phenomenon in an artificial system has previously proven elusive. We show that autocatalytic reactions within compartments-when autocatalysis, and reactant and solvent exchange outpace product exchange-drive osmosis and diffusion, resulting in compartment growth. We demonstrate, using the formose reaction compartmentalized in aqueous droplets in an emulsion, that compartment volume can more than double.

View Article and Find Full Text PDF

We enrolled arriving international air travelers in a severe acute respiratory syndrome coronavirus 2 genomic surveillance program. We used molecular testing of pooled nasal swabs and sequenced positive samples for sublineage. Traveler-based surveillance provided early-warning variant detection, reporting the first US Omicron BA.

View Article and Find Full Text PDF

We present a miniaturized waveguide-based absorption measurement system operating at a wavelength of 635 nm, based on a silicon nitride integrated photonic platform, suitable for lab-on-chip applications. We experimentally demonstrate a high correlation between the bulk dye concentration and the measured absorption loss levels in the waveguides. We explain a photonic design process for choosing the ideal waveguide to minimize the coefficient of variation on the analyte concentration.

View Article and Find Full Text PDF

Background: Enzymatic assays are among the most common diagnostic tests performed in the clinical laboratory. Enzymatic substrate analysis is most commonly measured using endpoint methods; however, modulating the reaction kinetics allows fine control of the reaction rate, which can be adjusted based on specific monitoring technologies.

Methods: We developed and optimized an enzymatic method for measurement of creatinine in plasma, using commonly paired enzymes of creatininase (Crtnnase), creatinase (Crtase), sarcosine oxidase (SOX), ascorbate oxidase (AOX), and horseradish peroxidase (HRP).

View Article and Find Full Text PDF