Paleontological research increasingly uses high-resolution micro-computed tomography (μCT) to study the inner architecture of modern and fossil bone material to answer important questions regarding vertebrate evolution. This non-destructive method allows for the measurement of otherwise inaccessible morphology. Digital measurement is predicated on the accurate segmentation of modern or fossilized bone from other structures imaged in μCT scans, as errors in segmentation can result in inaccurate calculations of structural parameters.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
September 2017
Cardiac magnetic resonance perfusion examinations enable noninvasive quantification of myocardial blood flow. However, motion between frames due to breathing must be corrected for quantitative analysis. Although several methods have been proposed, there is a lack of widely available benchmarks to compare different algorithms.
View Article and Find Full Text PDFBackground: Clinical studies report on vision impairment after blunt frontal head trauma. A possible cause is damage to the optic nerve bundle within the optic canal due to microfractures of the anterior skull base leading to indirect traumatic optic neuropathy.
Methods: A finite element study simulating impact forces on the paramedian forehead in different grades was initiated.
Introduction: Zygomatic fractures form a major entity in craniomaxillofacial traumatology. Few studies have dealt with biomechanical basics and none with the role of the facial soft tissues. Therefore this study should investigate, whether facial soft tissue plays a protecting role in lateral midfacial trauma.
View Article and Find Full Text PDFBackground: Perfusion quantification by using first-pass gadolinium-enhanced myocardial perfusion magnetic resonance imaging (MRI) has proved to be a reliable tool for the diagnosis of coronary artery disease that leads to reduced blood flow to the myocardium. The image series resulting from such acquisition usually exhibits a breathing motion that needs to be compensated for if a further automatic analysis of the perfusion is to be executed. Various algorithms have been presented to facilitate such a motion compensation, but the lack of publicly available data sets hinders a proper, reproducible comparison of these algorithms.
View Article and Find Full Text PDF