Publications by authors named "G Woehlke"

Microtubules gliding on motor-functionalized surfaces have been explored for various nanotechnological applications. However, when moving over large distances (several millimeters) and long times (tens of minutes), microtubules are lost due to surface detachment. Here, we demonstrate the multiplication of kinesin-1-driven microtubules that comprises two concurrent processes: (i) severing of microtubules by the enzyme spastin and (ii) elongation of microtubules by self-assembly of tubulin dimers at the microtubule ends.

View Article and Find Full Text PDF

Intermediate filaments (IFs) are key to the mechanical strength of metazoan cells. Their basic building blocks are dimeric coiled coils mediating hierarchical assembly of the full-length filaments. Here we use single-molecule force spectroscopy by optical tweezers to assess the folding and stability of coil 2B of the model IF protein vimentin.

View Article and Find Full Text PDF

Objective: To identify a novel disease gene in 2 families with autosomal recessive hereditary spastic paraplegia (HSP).

Methods: We used whole-exome sequencing to identify the underlying genetic disease cause in 2 families with apparently autosomal recessive spastic paraplegia. Endogenous expression as well as subcellular localization of wild-type and mutant protein were studied to support the pathogenicity of the identified mutations.

View Article and Find Full Text PDF

AAA ATPases form a functionally diverse superfamily of proteins. Most members form homo-hexameric ring complexes, are catalytically active only in the fully assembled state, and show co-operativity among the six subunits. The mutual dependence among the subunits is clearly evidenced by the fact that incorporation of mutated, inactive subunits can decrease the activity of the remaining wild type subunits.

View Article and Find Full Text PDF

Spastin and katanin are ring-shaped hexameric AAA ATPases that sever microtubules, and thus crucially depend on a physical interaction with microtubules. For the first time, we report here the microtubule binding properties of spastin at the single-molecule level, and compare them to katanin. Microscopic fluorescence assays showed that human spastin bound to microtubules by ionic interactions, and diffused along microtubules with a diffusion coefficient comparable to katanin.

View Article and Find Full Text PDF