Strength, ductility, and failure properties of metals are tailored by plastic deformation routes. Predicting these properties requires modeling of the structural dynamics and stress evolution taking place on several length scales. Progress has been hampered by a lack of representative 3D experimental data at industrially relevant degrees of deformation.
View Article and Find Full Text PDFBackground & Aim: Failure to identify a patient's energy requirement has a variety of consequences both physiological and economical. Previous studies have shown that predictive formulas, including the Harris Benedict equation (HB), both over- and underestimates energy requirement in severely ill patients and healthy younger adults, compared to the golden standard, indirect calorimetry (IC). The comparison between measured and estimated energy requirements in hospitalized patients in regular wards is underreported.
View Article and Find Full Text PDFIntroduction: MHC class II molecules are essential for appropriate immune responses against pathogens but are also implicated in pathological responses in autoimmune diseases and transplant rejection. Previous studies have shed light on the systemic contributions of MHC haplotypes to the development and severity of autoimmune diseases. In this study, we addressed the B cell intrinsic MHC haplotype impact on follicular inclusion, germinal center (GC) participation and plasma cell (PC) differentiation in the context of systemic lupus erythematosus (SLE).
View Article and Find Full Text PDFCircumstantial evidence suggests that B cells may instruct T cells to break tolerance. Here, to test this hypothesis, we used a murine model in which a single B cell clone precipitates an autoreactive response resembling systemic lupus erythematosus (SLE). The initiating clone did not need to enter germinal centers to precipitate epitope spreading.
View Article and Find Full Text PDF