Biochemistry (Mosc)
July 2014
More than 50 hereditary lysosomal storage disorders (LSDs) are currently described. Most of these disorders are due to a deficiency of certain hydrolases/glycosidases and subsequent accumulation of nonhydrolyzable carbohydrate-containing compounds in lysosomes. Such accumulation causing hypertrophy of the lysosomal compartment is a characteristic feature of affected cells in LSDs.
View Article and Find Full Text PDFThis review highlights different aspects of glycobiology with analysis of recent progress in the study of biosynthesis, degradation, and biological role of glycoconjugates and of hereditary diseases related to the metabolism of these compounds. In addition, the review presents some analysis of the papers of other authors who have contributed to this special issue.
View Article and Find Full Text PDFJ Nutr Biochem
October 2001
Many human milk glycoconjugates (glycolipids, glycoproteins, mucins, glycosaminoglycans) and oligosaccharides are biologically active, and their activity depends on the precise structure of the glycan. The sugars on the terminus of the glycan are vulnerable to cleavage by glycosidases. Because glycoconjugates incubate together with endogenous glycosidases in the breast between feedings, and in expressed milk during storage, the presence and activity of glycosidases in human milk was investigated.
View Article and Find Full Text PDFFucosyltransferases (FTs) and various glycosidases that are involved in the biosynthesis or degradation of SSEA-1 (Le(x)) antigens and their precursors in the CNS are developmentally regulated. In forebrain and cerebellum with lactosamine (LacNAc) as acceptor the FT activity was maximal at P15-P22, but with the glycolipid substrate paragloboside (nLc4) the maximal activity in cerebellum was obtained at P10-P15. The FT activity, with these substrates, was insensitive to N-ethylmaleimide (NEM) and the glycolipid product had an alpha1,3 linkage (Fuc to GlcNAc) suggesting similarities of the investigated enzyme to the cloned human and rat FT IV.
View Article and Find Full Text PDFWe report the cloning of a rat alpha1,3-fucosyltransferase gene (rFuc-T), isolated from a rat genomic library by a PCR-cross-hybridization based cloning approach using primers derived from the conserved region of human alpha1,3-Fuc-T sequences. Comparison of the rFuc-T predicted amino acid sequence with those of previously cloned human and murine fucosyltransferases showed highest degree of homology to murine Fuc-TIV (87% identity) and human Fuc-TIV (78% identity), with lower homology (41-49% identity) to Fuc-TIII, V, VI, and VII. COS-1 cells transfected with the rFuc-Tgene expressed a fucosyltransferase activity with type 2 (Gal beta1-->4GlcNAc)-containing oligosaccharides and the glycolipid acceptor neolactotetraosylceramide but only low activity with sialylated substrates; the SSEA-1/Le(x) antigen was detected in transfected cells by immunocytochemistry.
View Article and Find Full Text PDF