Publications by authors named "G Wider"

We introduce an alternative way for spin-state selection, RODA, which yields higher sensitivity for spin systems exhibiting a TROSY effect. With RODA, the TROSY component of a doublet is recorded twice using a double acquisition scheme. RODA works by simple addition of consecutive NMR signals, and does not require any special processing.

View Article and Find Full Text PDF

Cells continuously adapt cellular processes by integrating external and internal signals. In yeast, multiple stress signals regulate pheromone signaling to prevent mating under unfavorable conditions. However, the underlying crosstalk mechanisms remain poorly understood.

View Article and Find Full Text PDF

The increased interest in using monoclonal antibodies (mAbs) as a platform for biopharmaceuticals has led to the need for new analytical techniques that can precisely assess physicochemical properties of these large and very complex drugs for the purpose of correctly identifying quality attributes (QA). One QA, higher order structure (HOS), is unique to biopharmaceuticals and essential for establishing consistency in biopharmaceutical manufacturing, detecting process-related variations from manufacturing changes and establishing comparability between biologic products. To address this measurement challenge, two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR) methods were introduced that allow for the precise atomic-level comparison of the HOS between two proteins, including mAbs.

View Article and Find Full Text PDF

The homotrimeric ligand tumor necrosis factor α (TNFα) is a key cytokine and immune regulator; however, when deregulated, it leads to several major chronic inflammatory diseases. Perturbation of the protein-protein interface has proven to be an efficient strategy to inactivate TNFα, but the atomic-resolution mechanism of its inactivation remains poorly understood. Here, we probe the solution structure and dynamics of active and inactive TNFα using NMR spectroscopy.

View Article and Find Full Text PDF

Motivation: A detailed analysis of multidimensional NMR spectra of macromolecules requires the identification of individual resonances (peaks). This task can be tedious and time-consuming and often requires support by experienced users. Automated peak picking algorithms were introduced more than 25 years ago, but there are still major deficiencies/flaws that often prevent complete and error free peak picking of biological macromolecule spectra.

View Article and Find Full Text PDF