The strain relief of heteroepitaxial bcc-Fe(001) films, deposited at 520-570 K onto MgO(001), has been investigated by scanning tunneling microscopy. In accordance with real-time stress measurements, the tensile misfit strain is relieved during coalescence of flat, mainly 2-3 monolayers (ML) high Fe islands at the high thickness of approximately 20 ML. To accommodate the misfit between merging strain-relaxed islands, a network of 1/2[111] screw dislocations is formed.
View Article and Find Full Text PDFWe investigated the initial growth stages of Si(x)Ge(1-x)/Si(001) by real time stress measurements and in situ scanning tunneling microscopy at deposition temperatures, where intermixing effects are still minute (< or =900 K). Whereas Ge/Si(001) is a well known Stranski-Krastanow system, the growth of SiGe alloy films switches to a 3D island mode at Si content above 20%. The obtained islands are small (a few nanometers), are uniform in shape, and exhibit a narrow size distribution, making them promising candidates for future quantum dot devices.
View Article and Find Full Text PDF