The recently discovered metagenomic urethanases UMG-SP1, UMG-SP2, and UMG-SP3 have emerged as promising tools to establish a bio-based recycling approach for polyurethane (PU) waste. These enzymes are capable of hydrolyzing urethane bonds in low molecular weight dicarbamates as well as in thermoplastic PU and the amide bond in polyamide employing a Ser-Ser -Lys triad for catalysis, similar to members of the amidase signature protein superfamily. Understanding the catalytic mechanism of these urethanases is crucial for enhancing their enzymatic activity and improving PU bio-recycling processes.
View Article and Find Full Text PDFVolcano deformation can be detected over timescales from seconds to decades, offering valuable insights for magma dynamics. However, these signals are shaped by the long-term evolution of magmatic systems, a coupling that remains poorly understood. Here we integrate thermal models of crustal-scale magmatism with thermo-mechanical simulations of ground deformation.
View Article and Find Full Text PDFGonadotropins and progestins are the primary regulators of follicle maturation and ovulation in fish, and they require complex communication among the oocyte and somatic cells of the follicle. The major progestin and the maturation-inducing hormone in salmonids is 17α,20β-dihdroxy-4-pregnen-3-one (17,20βP), and traditional nuclear receptors and membrane steroid receptors for the progestin have been identified within the follicle. Herein, RNA-seq was used to conduct a comprehensive survey of changes in gene expression throughout the intact follicle in response to in vitro treatment with these hormones to provide a foundation for understanding the coordination of their actions in regulating follicle maturation and preparation for ovulation.
View Article and Find Full Text PDFThe femoral artery (FA) is the largest vessel in the hindlimb circulation and its proper tone regulation ensures adequate blood supply to muscle tissue. We investigated whether an alanine mutation of the targeting subunit of myosin-light-chain-phosphatase (MLCP), MYPT1, at threonine 696 (MYPT1-T696A/+), decisive for enzyme acivity, affects the responsiveness of young and old FAs (y-FAs and o-FAs) to activation of nitric-oxide/soluble-guanylate-cyclase/protein-kinase-G cascade (NO/sGC/PKG). Contractile responses of the vessels were measured by wire myography.
View Article and Find Full Text PDF