Silica-bearing waters in nature often alter the reactivity of mineral surfaces via deposition of Si complexes and solids. In this work, Fourier transform infrared (FTIR) spectroscopy was used to identify hydroxo groups at goethite (α-FeOOH) and lepidocrocite (γ-FeOOH) surfaces that are targeted by ligand exchange reactions with monomeric silicate species. Measurements of samples first reacted in aqueous solutions then dried under N(g) enabled resolution of the signature O-H stretching bands of singly (-OH), doubly (μ-OH), and triply coordinated (μ-OH) groups.
View Article and Find Full Text PDFNucleation is a fundamental step in crystal growth. Of environmental and materials relevance are reactions that lead to nucleation of iron oxyhydroxides in aqueous solutions. These reactions are difficult to study experimentally due to their rapid kinetics.
View Article and Find Full Text PDFInduced mineral precipitation is potentially important for the remediation of contaminants, such as during mineral trapping during carbon or toxic metal sequestration. The prediction of precipitation reactions is complicated by the porous nature of rocks and soils and their interaction with the precipitate, introducing transport and confinement effects. Here X-ray scattering measurements, modeling, and electron microscopies were used to measure the kinetics of calcium carbonate precipitation in a porous amorphous silica (CPG) that contained two discrete distributions of pore sizes: nanopores and macropores.
View Article and Find Full Text PDFInterfacial free energies often control heterogeneous nucleation of calcium carbonate (CaCO3) on mineral surfaces. Here we report an in situ experimental study of CaCO3 nucleation on mica (muscovite) and quartz, which allows us to obtain the interfacial energies governing heterogeneous nucleation. In situ grazing incidence small-angle X-ray scattering (GISAXS) was used to measure nucleation rates at different supersaturations.
View Article and Find Full Text PDF