Background: In group-sequential designs, it is typically assumed that there is no time gap between patient enrollment and outcome measurement in clinical trials. However, in practice, there is usually a lag between the two time points. This can affect the statistical analysis of the data, especially in trials with interim analyses.
View Article and Find Full Text PDFThe COVID-19 pandemic has led to an unprecedented response in terms of clinical research activity. An important part of this research has been focused on randomized controlled clinical trials to evaluate potential therapies for COVID-19. The results from this research need to be obtained as rapidly as possible.
View Article and Find Full Text PDFAdaptive trial methodology for multiarmed trials and enrichment designs has been extensively discussed in the past. A general principle to construct test procedures that control the family-wise Type I error rate in the strong sense is based on combination tests within a closed test. Using survival data, a problem arises when using information of patients for adaptive decision making, which are under risk at interim.
View Article and Find Full Text PDFWhere there are a limited number of patients, such as in a rare disease, clinical trials in these small populations present several challenges, including statistical issues. This led to an EU FP7 call for proposals in 2013. One of the three projects funded was the Innovative Methodology for Small Populations Research (InSPiRe) project.
View Article and Find Full Text PDFWith the advent of personalized medicine, clinical trials studying treatment effects in subpopulations are receiving increasing attention. The objectives of such studies are, besides demonstrating a treatment effect in the overall population, to identify subpopulations, based on biomarkers, where the treatment has a beneficial effect. Continuous biomarkers are often dichotomized using a threshold to define two subpopulations with low and high biomarker levels.
View Article and Find Full Text PDF