Inactivated vaccines, such as tick-borne-encephalitis-virus-(TBEV) vaccine, have been discussed as less immunogenic in elderly and in immunocompromised patients. In this controlled cross-sectional cohort study, the antibody and cellular responses after TBEV-vaccination were investigated in 36 rheumatoid arthritis (RA) patients and 112 healthy controls (HC) by evaluating IgG-anti-TBEV concentration, neutralization and relative avidity index (RAI). Cellular reactivity was assessed by IFNgamma-producing spot-forming-units (SFU) by ELISPOT assay and flow cytometry.
View Article and Find Full Text PDFFront Immunol
June 2023
Background: Immune imprinting is a phenomenon in which a person's immune system develops a specific immunological memory of the pathogen or vaccine due to a previous exposure. This memory basically leads to a faster and stronger immune response in a subsequent contact to the same pathogen or vaccine. However, what happens if the pathogen has changed considerably in the meantime due to mutations in the main target region of antibodies, as in the evolution of SARS-CoV-2 from the ancestral strain to B.
View Article and Find Full Text PDFBackground: Residents of nursing homes are one of the most vulnerable groups during the severe acute syndrome coronavirus 2 (SARS-CoV-2) pandemic. The aim of this study was to characterize cellular and humoral immune responses in >70-year-old participants before vaccination, after first and second vaccination with BNT162b2, in contrast to second-dose-vaccinated participants younger than 60 years.
Methods: Peripheral blood mononuclear cells of 45 elderly and 40 younger vaccinees were analyzed by IFNγ ELISpot, specific immunoglobulin G antibody titers against SARS-CoV-2 spike protein, and neutralization abilities against SARS-CoV-2 wild-type (WT) and Delta variant (B.
Different scenarios explaining the emergence of novel variants of concern (VOC) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported, including their evolution in scarcely monitored populations, in animals as alternative hosts, or in immunocompromised individuals. Here we report SARS-CoV-2 immune escape mutations over a period of seven months in an immunocompromised patient with prolonged viral shedding. Signs of infection, viral shedding and mutation events are periodically analyzed using RT-PCR and next-generation sequencing based on naso-pharyngeal swabs, with the results complemented by immunological diagnostics to determine humoral and T cell immune responses.
View Article and Find Full Text PDFSince its outbreak in 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) keeps surprising the medical community by evolving diverse immune escape mutations in a rapid and effective manner. To gain deeper insight into mutation frequency and dynamics, we isolated ten ancestral strains of SARS-CoV-2 and performed consecutive serial incubation in ten replications in a suitable and common cell line and subsequently analysed them using RT-qPCR and whole genome sequencing. Along those lines we hoped to gain fundamental insights into the evolutionary capacity of SARS-CoV-2 in vitro.
View Article and Find Full Text PDF