The secondary shoot blight phase of fire blight is a critical component of disease epidemics in apples, pears, and other Rosaceae family plants with infection occurring at the tips of vigorously growing branches. Shoot blight infections are exacerbated in modern high-density apple plantings, where growers emphasize maximizing tree growth to recapture planting costs and increase yields of high-quality fruit. The overarching goal of this study was to develop new strategies for shoot blight management that do not impact the growth and yield of young apple trees.
View Article and Find Full Text PDFFlowers serve as hubs for biotic interactions with pollinators and microbes, which can significantly impact plant reproduction and health. Previous studies have shown that the flower microbiota undergoes dynamic assembly processes during anthesis. However, the influence of foraging pollinators on the assembly and dispersal of the flower microbiota and the transmission of plant pathogens remains poorly understood.
View Article and Find Full Text PDFPlant diseases significantly impact food security and food safety. It was estimated that food production needs to increase by 50% to feed the projected 9.3 billion people by 2050.
View Article and Find Full Text PDFCyclic-di-GMP (c-di-GMP) is a critical bacterial second messenger that enables the physiological phase transition in , the phytopathogenic bacterium that causes fire blight disease. C-di-GMP generation is dependent on diguanylate cyclase enzymes while the degradation of c-di-GMP can occur through the action of phosphodiesterase (PDE) enzymes that contain an active EAL and/or a HD-GYP domain. The HD-GYP-type PDEs, which are absent in , can directly degrade c-di-GMP into two GMP molecules.
View Article and Find Full Text PDF