As emerging cutting-edge energy storage technologies, aqueous zinc-ion batteries (AZIBs) have garnered extensive research attention for its high safety, low cost, abundant raw materials, and, eco-friendliness. Nevertheless, the commercialization of AZIBs is mainly limited by insufficient development of cathode materials. Among potential candidates, MXene-based materials stand out as a promising option for their unique combination of hydrophilicity and conductivity.
View Article and Find Full Text PDFRocky desertification (RD) is a severe phenomenon in karst areas, often referred to as "ecological cancer." However, studies on RD rarely include comparative analysis of different man-land relationship areas. This lack of analysis leads to difficulties in preventing and controlling RD in local areas with complex man-land relationships.
View Article and Find Full Text PDFArchitecting Prussian blue analogue (PBA) cathodes with optimized synergistic bimetallic reaction centers is a paradigmatic strategy for devising high-energy sodium-ion batteries (SIBs); however, these cathodes usually suffer from fast capacity fading and sluggish reaction kinetics. To alleviate the above problems, herein, a series of early transition metal (ETM)-late transition metal (LTM)-based PBA (Fe-VO, Fe-TiO, Fe-ZrO, Co-VO, and Fe-Co-VO) cathode materials have been conveniently fabricated via an "acid-assisted synthesis" strategy. As a paradigm, the FeVO-PBA (FV) delivers a superb rate capability (148.
View Article and Find Full Text PDFThe power conversion efficiencies (PCEs) of polycrystalline perovskite solar cells (PC-PSCs) have now reached a plateau after a decade of rapid development, leaving a distinct gap from their Shockley-Queisser limit. To continuously mitigate the PCE deficit, nonradiative carrier losses resulting from defects should be further optimized. Single-crystal perovskites are considered an ideal platform to study the efficiency limit of perovskite solar cells due to their intrinsically low defect density, as demonstrated in bulk single crystals.
View Article and Find Full Text PDFTrauma healing is the process of healing after the body has been subjected to an external force and the skin and other tissues have become dissected or defective, showing the synergistic effect of various processes. Therefore, the investigation of innovative wound dressings has significant research and clinical implications. In this study, we constructed a zinc based metal-organic framework (MOF) and loaded with antimicrobial peptide LL37 to prepare LL37@ZPF-2 (ZPF = zeolite pyrimidine backbone), which was subsequently integrated with Poloxamer 407 to fabricate LL37@ZPF-2 thermosensitive hydrogel.
View Article and Find Full Text PDF