Nuclear isomer effects are pivotal in understanding nuclear astrophysics, particularly in the rapid neutron-capture process where the population of metastable isomers can alter the radioactive decay paths of nuclei produced during astrophysical events. The β-decaying isomer ^{128m}Sb was identified as potentially impactful since the β-decay pathway along the A=128 isobar funnels into this state bypassing the ground state. We report the first direct mass measurements of the ^{128}Sb isomer and ground state using the Canadian Penning Trap mass spectrometer at Argonne National Laboratory.
View Article and Find Full Text PDFThe excited-state structure of atomic nuclei can modify nuclear processes in stellar environments. In this Letter, we study the influence of nuclear excitations on Urca cooling (repeated back-and-forth β decay and electron capture in a pair of nuclear isotopes) in the crust and ocean of neutron stars. We provide for the first time an expression for Urca process neutrino luminosity which accounts for a thermal Boltzmann distribution of excited states in both members of an Urca pair.
View Article and Find Full Text PDF