Publications by authors named "G W Hennig"

This study presents a novel methodology for high-resolution 3D bladder modeling during filling, developed by leveraging improved imaging and computational techniques. Using murine bladder filling data, the methodology generates accurate 3D geometries across time, enabling in-depth mechanical analysis. Comparison with a traditional spherical model revealed similar stress trends, but the 3D model permitted nuanced quantifications, such as localized surface curvature and stress analysis.

View Article and Find Full Text PDF

The routing of blood flow throughout the brain vasculature is precisely controlled by mechanisms that serve to maintain a fine balance between local neuronal demands and vascular supply of nutrients. We recently identified two capillary endothelial cell (cEC)-based mechanisms that control cerebral blood flow in vivo: 1) electrical signaling, mediated by extracellular K-dependent activation of strong inward rectifying K (Kir2.1) channels, which are steeply activated by hyperpolarization and thus are capable of cell-to-cell propagation, and 2) calcium (Ca) signaling, which reflects release of Ca via the inositol 1,4,5-trisphosphate receptor (IPR)-a target of G-protein-coupled receptor signaling.

View Article and Find Full Text PDF

Objective : Vascular endothelial cells (ECs) sense and respond to both trauma factors (histone proteins) and sepsis signals (bacterial lipopolysaccharide, LPS) with elevations in calcium (Ca 2+ ), but it is not clear if the patterns of activation are similar or different. We hypothesized that within seconds of exposure, histones but not LPS would produce a large EC Ca 2+ response. We also hypothesized that histones would produce different spatio-temporal patterns of Ca 2+ events in veins than in arteries.

View Article and Find Full Text PDF

Objective: To describe the development of uroabdomen secondary to spontaneous bladder rupture in a dog with dystocia.

Case Summary: A 2-year-old intact female Boston Terrier was referred for prolonged labor of 72 hours. At presentation, the dog had delivered 8 puppies at home, with the last pup being stillborn.

View Article and Find Full Text PDF

The transitional epithelial cells (urothelium) that line the lumen of the urinary bladder form a barrier between potentially harmful pathogens, toxins, and other bladder contents and the inner layers of the bladder wall. The urothelium, however, is not simply a passive barrier, as it can produce signaling factors, such as ATP, nitric oxide, prostaglandins, and other prostanoids, that can modulate bladder function. We investigated whether substances produced by the urothelium could directly modulate the contractility of the underlying urinary bladder smooth muscle.

View Article and Find Full Text PDF