Publications by authors named "G W Crooks"

Genetically modified, induced pluripotent stem cells (iPSCs) offer a promising allogeneic source for the generation of functionally enhanced, chimeric antigen receptor (CAR) T cells. However, the signaling of CARs during early T cell development and the removal of the endogenous T cell receptor required to prevent alloreactivity pose significant challenges to the production of mature conventional CAR T cells from iPSCs. Here, we show that TCR-null, CD8αβ CAR T cells can be efficiently generated from iPSCs by engineering stage-specific onset of CAR expression and signaling to both permit conventional T cell development and to induce efficient positive selection.

View Article and Find Full Text PDF

X-linked lymphoproliferative disease (XLP1) results from gene mutations affecting the SLAM-associated protein (SAP). A regulated lentiviral vector (LV), XLP-SMART LV, designed to express SAP at therapeutic levels in T, NK, and NKT cells, is crucial for effective gene therapy. We experimentally identified 34 genomic regulatory elements of the gene and designed XLP-SMART LVs to emulate the lineage and stage-specific control of SAP.

View Article and Find Full Text PDF

The processes that govern human haematopoietic stem cell (HSC) self-renewal and engraftment are poorly understood and challenging to recapitulate in culture to reliably expand functional HSCs. Here we identify MYC target 1 (MYCT1; also known as MTLC) as a crucial human HSC regulator that moderates endocytosis and environmental sensing in HSCs. MYCT1 is selectively expressed in undifferentiated human haematopoietic stem and progenitor cells (HSPCs) and endothelial cells but becomes markedly downregulated during HSC culture.

View Article and Find Full Text PDF

Recombination activating genes () are tightly regulated during lymphoid differentiation, and their mutations cause a spectrum of severe immunological disorders. Hematopoietic stem and progenitor cell (HSPC) transplantation is the treatment of choice but is limited by donor availability and toxicity. To overcome these issues, we developed gene editing strategies targeting a corrective sequence into the human gene by homology-directed repair (HDR) and validated them by tailored two-dimensional, three-dimensional, and in vivo xenotransplant platforms to assess rescue of expression and function.

View Article and Find Full Text PDF
Article Synopsis
  • - Pluripotent stem cells (PSCs) are being explored as a source for off-the-shelf T cell immunotherapies, but their differentiation into mature T cells can lead to complications if not properly managed.
  • - Researchers successfully generated mature T cells from genetically edited PSCs that lack specific T cell receptors (TCRs) and class I major histocompatibility complexes, using a combination of human and murine cells for T cell maturation.
  • - The study found that these edited T cells demonstrated significantly improved tumor control in mouse models compared to those with intact TCRs, suggesting a promising approach for enhancing T cell immunotherapies derived from PSCs.
View Article and Find Full Text PDF