Publications by authors named "G W Christie"

Spore-forming organisms are an integral component of the rhizosphere, providing plants with significant advantages. Previous studies determined the antimicrobial activity of the olive sporobiota, identifying five candidates of particular relevance, belonging to the Bacillus subtilis, Peribacillus simplex and Bacillus cereus clade. This study aimed to determine their biotechnological properties, safety aspects, spore structure and resistance, and interaction with the environment through a combined microbiological and genomic approach.

View Article and Find Full Text PDF

We used phage display, antibody engineering, and high-throughput assays to identify antibody-accessible targets of . We report the discovery of monoclonal antibodies (mAbs) binding to type 3 fimbrial proteins, including MrkA. We found that anti-MrkA mAbs were cross-reactive to a diverse panel of clinical isolates, representing different O-serotypes.

View Article and Find Full Text PDF

Background: The world faces a major infectious disease challenge. Interest in the discovery, design, or development of antimicrobial peptides (AMPs) as an alternative approach for the treatment of bacterial infections has increased. Insects are a good source of AMPs which are the main effector molecules of their innate immune system.

View Article and Find Full Text PDF

Cognitive aging is a complex and dynamic process characterized by changes due to genetics and environmental factors, including lifestyle choices and environmental exposure, which contribute to the heterogeneity observed in cognitive outcomes. This heterogeneity is particularly pronounced among older adults, with some individuals maintaining stable cognitive function while others experience complex, non-linear changes, making it difficult to identify meaningful decline accurately. Current research methods range from population-level modeling to individual-specific assessments.

View Article and Find Full Text PDF

The ever-increasing risks posed by antibiotic-resistant bacteria have stimulated considerable interest in the development of novel antimicrobial strategies, including the use of nanomaterials that can be activated on demand and result in irreversible damage to pathogens. Microwave electric field-assisted bactericidal effects on representative Gram-negative and Gram-positive bacterial strains were achieved in the presence of hybrid polydopamine-silver nanoparticles (PDA-Ag NPs) under low-power microwave irradiation using a resonant cavity (1.3 W, 2.

View Article and Find Full Text PDF