Publications by authors named "G Vorobjev"

For the first time, a small room-temperature electron beam ion trap (EBIT), operated with permanent magnets, was successfully used for charge breeding experiments. The relatively low magnetic field of this EBIT does not contribute to the capture of the ions; single-charged ions are only caught by the space charge potential of the electron beam. An over-barrier injection method was used to fill the EBIT's electrostatic trap with externally produced, single-charged potassium ions.

View Article and Find Full Text PDF

The masses of ten proton-rich nuclides, including the N=Z+1 nuclides ⁸⁵Mo and ⁸⁷Tc, were measured with the Penning trap mass spectrometer SHIPTRAP. Compared to the Atomic Mass Evaluation 2003 a systematic shift of the mass surface by up to 1.6 MeV is observed causing significant abundance changes of the ashes of astrophysical x-ray bursts.

View Article and Find Full Text PDF

The nuclides 104-108Sn, 106-110Sb, 108,109Te, and 111I at the expected endpoint of the astrophysical rp process have been produced in 58Ni+natNi fusion-evaporation reactions at IGISOL and their mass values were precisely measured with the JYFLTRAP Penning trap mass spectrometer. For 106Sb, 108Sb, and 110Sb these are the first direct experimental mass results obtained. The related one-proton separation energies have been derived and the value for 106Sb, Sp=424(8) keV, shows that the branching into the closed SnSbTe cycle in the astrophysical rp process is weaker than expected.

View Article and Find Full Text PDF

Nuclides in the vicinity of 94Ag have been studied with the Penning trap mass spectrometer JYFLTRAP at the Ion-Guide Isotope Separator On-Line. The masses of the two-proton-decay daughter 92Rh and the beta-decay daughter 94Pd of the high-spin isomer in 94Ag have been measured, and the masses of 93Pd and 94Ag have been deduced. When combined with the data from the one-proton- or two-proton-decay experiments, the results lead to contradictory mass excess values for the high-spin isomer in 94Ag, -46 370(170) or -44 970(100) keV, corresponding to excitation energies of 6960(400) or 8360(370) keV, respectively.

View Article and Find Full Text PDF

The electron beam ion source MAXEBIS, developed and built at the University of Frankfurt, has been installed at GSI to serve as an offline test ion source for the HITRAP project and for use as a test setup for charge breeding explorations. The setup has been equipped with new diagnostics and beam optics devices. Two ion sources dedicated to the production of singly charged ions for external ion injection into the MAXEBIS have been included.

View Article and Find Full Text PDF