Background: Endotype classification becomes the cornerstone of understanding sepsis pathogenesis. Macrophage activation-like syndrome (MALS) and immunoparalysis are the best recognized major endotypes, so far. Interferon-gamma (IFNγ) action on tissue macrophages stimulates the release of the cytotoxic chemokine CXCL9.
View Article and Find Full Text PDFObjective: To investigate the metabolomic profiles associated with different immune activation states in sepsis patients.
Design: Subgroup analysis of the PROVIDE (a Personalized Randomized trial of Validation and restoration of Immune Dysfunction in severe infections and Sepsis) prospective clinical study.
Setting: Results of the PROVIDE study showed that patients with sepsis may be classified into three states of immune activation: 1) macrophage-activation-like syndrome (MALS) characterized by hyperinflammation, sepsis-induced immunoparalysis, and 3) unclassified or intermediate patients without severe immune dysregulation.
Objectives: It is suggested that sepsis may be classified into four clinical phenotypes, using an algorithm employing 29 admission parameters. We applied a simplified phenotyping algorithm among patients with bacterial sepsis and severe COVID-19 and assessed characteristics and outcomes of the derived phenotypes.
Design: Retrospective analysis of data from prospective clinical studies.
The state of immune activation may guide targeted immunotherapy in sepsis. In a double-blind, double-dummy randomized clinical study, 240 patients with sepsis due to lung infection, bacteremia, or acute cholangitis were subjected to measurements of serum ferritin and HLA-DR/CD14. Patients with macrophage activation-like syndrome (MALS) or immunoparalysis were randomized to treatment with anakinra or recombinant interferon-gamma or placebo.
View Article and Find Full Text PDF