Publications by authors named "G Vidarsson"

Objectives: Convalescent plasma (CP) treatment of COVID-19 has shown significant therapeutic effect only when administered early. We investigated the importance of patient and CP seroprofiles on treatment outcome in REMAP-CAP CP trial.

Methods: We evaluated neutralising antibodies (nAb), anti-spike (S) IgM, IgG, IgG avidity, IgG fucosylation and respiratory viral loads in a sub-set of patients (n=80) and controls (n=51) before and after transfusion, comparing them to those in the CP units (n=157) they received.

View Article and Find Full Text PDF

Protective immunity to malaria depends on acquisition of parasite-specific antibodies, with Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) being one of the most important target antigens. The effector functions of PfEMP1-specific IgG include inhibition of infected erythrocyte (IE) sequestration and opsonization of IEs for cell-mediated destruction. IgG glycosylation modulates antibody functionality, with increased affinity to FcγRIIIa for IgG lacking fucose in the Fc region (Fc-afucosylation).

View Article and Find Full Text PDF

Although immunoglobulin G (IgG) harbors just one -glycosylation site per heavy chain, this glycosylation plays a key role in modulating its function. In human serum, IgG is classified into four subclasses (IgG1, IgG2, IgG3, IgG4), each characterized by unique features in their sequences, disulfide bridges and glycosylation signatures. While protein glycosylation is typically studied at the compositional level, this severely underestimates the complexity of the molecules involved.

View Article and Find Full Text PDF

Background: Acquired immunity to Plasmodium falciparum malaria is mainly mediated by immunoglobulin G (IgG) targeting erythrocyte membrane protein 1 (PfEMP1). These adhesins mediate infected erythrocyte (IE) sequestration, protecting IEs from splenic destruction. PfEMP1-specific IgG is therefore thought to protect mainly by inhibiting IE sequestration.

View Article and Find Full Text PDF

Cancer vaccines are a promising strategy to increase tumor-specific immune responses in patients who do not adequately respond to checkpoint inhibitors. Cancer vaccines that contain patient-specific tumor antigens are most effective but also necessitate the production of patient-specific vaccines. This study aims to develop a versatile cancer vaccine format in which patient-specific tumor antigens can be site-specifically conjugated by a proximity-based Sortase A (SrtA)-mediated ligation (PBSL) approach to antibodies that specifically bind to antigen-presenting cells to stimulate immune responses.

View Article and Find Full Text PDF