Publications by authors named "G Verreck"

The aim of this study was to develop antisense oligonucleotide tablet formulations using high-speed electrospinning. Hydroxypropyl-beta-cyclodextrin (HPβCD) was used as a stabilizer and as an electrospinning matrix. In order to optimize the morphology of the fibers, electrospinning of various formulations was carried out using water, methanol/water (1:1), and methanol as solvents.

View Article and Find Full Text PDF

The present paper reports the powder filling of milled electrospun materials in vials, which contained voriconazole and sulfobutylether-β-cyclodextrin. High-speed electrospinning was used for the production of the fibrous sample, which was divided into 6 parts. Each portion was milled using different milling methods and sizes of sieves to investigate whether the milling influences the powder and filling properties.

View Article and Find Full Text PDF

Electrospinning is a technology for manufacture of nano- and micro-sized fibers, which can enhance the dissolution properties of poorly water-soluble drugs. Tableting of electrospun fibers have been demonstrated in several studies, however, continuous manufacturing of tablets have not been realized yet. This research presents the first integrated continuous processing of milled drug-loaded electrospun materials to tablet form supplemented by process analytical tools for monitoring the active pharmaceutical ingredient (API) content.

View Article and Find Full Text PDF

Solid formulations of monoclonal antibodies present several advantages, such as improved stability and increased shelf-life as well as simpler storage and transportation. In this study, we present a gentle drying technology for monoclonal antibodies, applying the water soluble 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) as matrix, to prepare a solid reconstitution dosage form. High-speed electrospinning of an aqueous infliximab-containing HP-β-CD solution was carried out at 25 °C resulting in fibers with an average diameter of 2.

View Article and Find Full Text PDF

A model anaerobic bacterium strain from the gut microbiome (Clostridium butyricum) producing anti-inflammatory molecules was incorporated into polymer-free fibers of a water-soluble cyclodextrin matrix (HP-β-CD) using a promising scaled-up nanotechnology, high-speed electrospinning. A long-term stability study was also carried out on the bacteria in the fibers. Effect of storage conditions (temperature, presence of oxygen) and growth conditions on the bacterial viability in the fibers was investigated.

View Article and Find Full Text PDF