Publications by authors named "G Varetti"

Diamond-Blackfan anemia (DBA) results from haploinsufficiency of ribosomal protein subunits in hematopoietic progenitors in the earliest stages of committed erythropoiesis. Nemo-like kinase (NLK) is chronically hyperactivated in committed erythroid progenitors and precursors in multiple human and murine models of DBA. Inhibition of NLK activity and suppression of NLK expression both improve erythroid expansion in these models.

View Article and Find Full Text PDF

Diamond Blackfan Anemia (DBA) is a congenital bone marrow failure syndrome associated with ribosomal gene mutations that lead to ribosomal insufficiency. DBA is characterized by anemia, congenital anomalies, and cancer predisposition. Treatment for DBA is associated with significant morbidity.

View Article and Find Full Text PDF

Diamond-Blackfan anemia (DBA) is characterized by anemia and cancer susceptibility and is caused by mutations in ribosomal genes, including RPL11. Here, we report that Rpl11-heterozygous mouse embryos are not viable and that Rpl11 homozygous deletion in adult mice results in death within a few weeks, accompanied by bone marrow aplasia and intestinal atrophy. Importantly, Rpl11 heterozygous deletion in adult mice results in anemia associated with decreased erythroid progenitors and defective erythroid maturation.

View Article and Find Full Text PDF

Aneuploidy, defined as an abnormal number of chromosomes, is a hallmark of cancer. Paradoxically, aneuploidy generally has a negative impact on cell growth and fitness in nontransformed cells. In this work, we review recent progress in identifying how aneuploidy leads to genomic and chromosomal instability, how cells can adapt to the deleterious effects of aneuploidy, and how aneuploidy contributes to tumorigenesis in different genetic contexts.

View Article and Find Full Text PDF

Data from human tumors and mouse models suggest that tetraploidy, one example of polyploidy, can promote tumorigenesis. In this issue of Cancer Cell, Davoli and De Lange make important connections between tetraploidy, tumorigenesis, and telomere crisis-a common event during the development of human cancers.

View Article and Find Full Text PDF