The emergence of parasites partially resistant to artemisinins (ART-R) poses a significant threat to recent gains in malaria control. ART-R has been associated with PfKelch13 (K13) mutations, which differ in fitness costs. This study investigates the gametocyte production and transmission fitness of African and Asian isolates with different K13 genotypes across multiple mosquito species.
View Article and Find Full Text PDFBackground: Currently licensed and approved malaria subunit vaccines provide modest, short-lived protection against malaria. Immunization with live-attenuated malaria parasites is an alternative vaccination strategy that has potential to improve protection.
Methods: We conducted a double-blind, controlled clinical trial to evaluate the safety, side-effect profile, and efficacy of immunization, by means of mosquito bites, with a second-generation genetically attenuated parasite (GA2) - a single knockout NF54 parasite (sporozoite form) with extended development into the liver stage.
The malaria-causing parasite, P. falciparum, replicates through schizogony, a tightly orchestrated process where numerous daughter parasites are formed simultaneously. Proper division and segregation of one-per-cell organelles, like the mitochondrion and apicoplast, are essential, yet remain poorly understood.
View Article and Find Full Text PDFAsexual blood stage culture of Plasmodium falciparum is routinely performed but reproducibly inducing commitment to and maturation of viable gametocytes remains difficult. Culture media can be supplemented with human serum substitutes to induce commitment but these generally only allow for long-term culture of asexual parasites and not transmission-competent gametocytes due to their different lipid composition. Recent insights demonstrated the important roles lipids play in sexual commitment; elaborating on this we exposed ring stage parasites (20-24 hours hpi) for one day to AlbuMAX supplemented media to trigger induction to gametocytogenesis.
View Article and Find Full Text PDFBackground: The stalling global progress in malaria control highlights the need for novel tools for malaria elimination, including transmission-blocking vaccines. Transmission-blocking vaccines aim to induce human antibodies that block parasite development in the mosquito and mosquitoes becoming infectious. The Pfs48/45 protein is a leading Plasmodium falciparum transmission-blocking vaccine candidate.
View Article and Find Full Text PDF