Non-alcoholic fatty liver disease (NAFLD) is a major metabolic disorder with no established pharmacotherapy. Quercetin, a polyphenolic flavonoid, demonstrates potential hepatoprotective effects but has limited bioavailability. This study evaluates the impact of quercetin on NAFLD and assesses the roles of autophagy-related proteins in disease progression.
View Article and Find Full Text PDFMetabolic dysfunction-associated fatty liver disease (MASLD) is a widespread liver disorder characterized by excessive fat accumulation in the liver, commonly associated with metabolic syndrome components such as obesity, diabetes, and dyslipidemia. With a global prevalence of up to 30%, MASLD is projected to affect over 100 million people in the U.S.
View Article and Find Full Text PDFBackground: Fingolimod hydrochloride (FH) has emerged as a vital medication for managing Multiple Sclerosis (MS). Despite its high oral bioavailability of 93%, it is plagued by slow oral absorption (T = 8-12 h) and extensive hepatic metabolism. Intranasal administration has emerged as an alternative to address these limitations, ensuring efficient central nervous system delivery and minimizing peripheral exposure and first-pass metabolism.
View Article and Find Full Text PDFDespite the appealing properties of random copolymers, the use of these biomaterials in association with phospholipids is still limited, as several aspects of their performance have not been investigated. The aim of this work is the formulation of lipid/random copolymer platforms and the comprehensive study of their features by multiple advanced characterization techniques. Both biomaterials are amphiphilic, including two phospholipids (1,2-dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)) and a statistical copolymer of oligo (ethylene glycol) methyl ether methacrylate (OEGMA) and 2-(diisopropylamino) ethyl methacrylate (DIPAEMA).
View Article and Find Full Text PDFVascular calcification (VC) is a complex process of calcium deposition on the arterial wall and atherosclerotic plaques and involves interaction between vascular smooth muscle cells, inflammatory and VC mediators. The latter are independent predictors of cardiovascular morbidity and mortality and potential targets of pharmaceutical therapy. This paper is a narrative review of the complex mechanisms of VC development and in this context the potential anti-atherosclerotic effects of statins.
View Article and Find Full Text PDF