Publications by authors named "G VARCA"

Background: Recent advancements in nanomedicine and nanotechnology have expanded the scope of multifunctional nanostructures, offering innovative solutions for targeted drug delivery and diagnostic agents in oncology and nuclear medicine. Nanoparticles, particularly those derived from natural sources, hold immense potential in overcoming biological barriers to enhance therapeutic efficacy and diagnostic accuracy. Papain, a natural plant protease derived from , emerges as a promising candidate for green nanotechnology-based applications due to its diverse medicinal properties, including anticancer properties.

View Article and Find Full Text PDF

Local treatment of bladder cancer faces several limitations such as short residence time or low permeation through urothelium tissue. The aim of this work was to develop patient-friendly mucoadhesive gel formulations combining gemcitabine and the enzyme papain for improved intravesical chemotherapy delivery. Hydrogels based on two different polysaccharides, gellan gum and sodium carboxymethylcellulose (CMC), were prepared with either native papain or papain nanoparticles (nanopapain) to explore for the first time their use as permeability enhancers through bladder tissue.

View Article and Find Full Text PDF

Bladder cancer (BC) is the tenth most common type of cancer worldwide, affecting up to four times more men than women. Depending on the stage of the tumor, different therapy protocols are applied. Non-muscle-invasive cancer englobes around 70% of the cases and is usually treated using the transurethral resection of bladder tumor (TURBIT) followed by the instillation of chemotherapy or immunotherapy.

View Article and Find Full Text PDF

The synthesis and engineering of nanomaterials offer more robust systems for the treatment of cancer, with technologies that combine therapy with imaging diagnostic tools in the so-called nanotheranostics. Among the most studied systems, there are quantum dots, liposomes, polymeric nanoparticles, inorganic nanoparticles, magnetic nanoparticles, dendrimers, and gold nanoparticles. Most of the advantages of nanomaterials over the classic anticancer therapies come from their optimal size, which prevents the elimination by the kidneys and enhances their permeation in the tumor due to the abnormal blood vessels present in cancer tissues.

View Article and Find Full Text PDF

Papain is a therapeutic enzyme with restricted applications due to associated allergenic reactions. Papain nanoparticles have shown to be safe for biomedical use, although a method for proper drug loading and release remains to be developed. Thus, the objective of this work was to develop and assess the stability of papain nanoparticles in a prototype semi-solid formulation suitable for dermatological or topical administrations.

View Article and Find Full Text PDF