Publications by authors named "G V Zatonsky"

Polyene antibiotics have been used in antifungal therapy since the mid-twentieth century. They are highly valued for their broad spectrum of activity and the rarity of pathogen resistance to their action. However, their use in the treatment of systemic mycoses often results in serious side-effects.

View Article and Find Full Text PDF

A series of sulfonamide-derived quinoxaline 1,4-dioxides were synthesized and evaluated as inhibitors of carbonic anhydrases (CA) with antiproliferative potency. Overall, the synthesized compounds demonstrated good inhibitory activity against four CA isoforms. Compound 7g exhibited favorable potency in inhibiting a CA IX isozyme with a value of 42.

View Article and Find Full Text PDF

The sustained rise of antimicrobial resistance (AMR) causes a strong need to develop new antibacterial agents. One of the methods for addressing the problem of antibiotic resistance is through the design of hybrid antibiotics. In this work, we proposed a synthetic route for the conjugation of an azithromycin derivative with chloramphenicol and metronidazole hemisuccinates and synthesized two series of new hybrid molecules - and -.

View Article and Find Full Text PDF

The World Health Organization (WHO) reports that tuberculosis (TB) is one of the top 10 leading causes of global mortality. The increasing incidence of multidrug-resistant TB highlights the urgent need for an intensified quest to discover innovative anti-TB medications In this study, we investigated four new derivatives from the quinoxaline-2-carboxylic acid 1,4-dioxide class. New 3-methylquinoxaline 1,4-dioxides with a variation in substituents at positions 2 and 6(7) were synthesized via nucleophilic aromatic substitution with amines and assessed against a spp.

View Article and Find Full Text PDF

Aminoglycosides are one of the first classes of antibiotics to have been used clinically, and they are still being used today. They have a broad spectrum of antimicrobial activity, making them effective against many different types of bacteria. Despite their long history of use, aminoglycosides are still considered promising scaffolds for the development of new antibacterial agents, particularly as bacteria continue to develop resistances to existing antibiotics.

View Article and Find Full Text PDF