Publications by authors named "G V Varsos"

: The critical closing pressure (CrCP) defines arterial blood pressure below which cerebral arteries collapse. It represents a clinically relevant parameter for the estimation of cerebrovascular tone. Although there are few methods to assess CrCP, there is no consensus which of them estimates this parameter most accurately.

View Article and Find Full Text PDF

Objective: Brain arterial critical closing pressure (CrCP) has been studied in several diseases such as traumatic brain injury (TBI), subarachnoid haemorrhage, hydrocephalus, and in various physiological scenarios: intracranial hypertension, decreased cerebral perfusion pressure, hypercapnia, etc. Little or nothing so far has been demonstrated to characterise change in CrCP during mild hypocapnia.

Method: We retrospectively analysed recordings of intracranial pressure (ICP), arterial blood pressure (ABP) and blood flow velocity from 27 severe TBI patients (mean 39.

View Article and Find Full Text PDF

Objectives: The objectives were to compare three methods of estimating critical closing pressure (CrCP) in a scenario of a controlled increase in intracranial pressure (ICP) induced during an infusion test in patients with suspected normal pressure hydrocephalus (NPH).

Methods: We retrospectively analyzed data from 37 NPH patients who underwent infusion tests. Computer recordings of directly measured intracranial pressure (ICP), arterial blood pressure (ABP) and transcranial Doppler cerebral blood flow velocity (CBFV) were used.

View Article and Find Full Text PDF

Objectives: Increased intracranial pressure (ICP) is a pathological feature of many neurological diseases; however, the local and systemic sequelae of raised ICP are incompletely understood. Using an experimental paradigm, we aimed to describe the cerebrovascular consequences of acute increases in ICP.

Materials And Methods: We assessed cerebral haemodynamics [mean arterial blood pressure (MAP), ICP, laser Doppler flowmetry (LDF), basilar artery Doppler flow velocity (Fv) and estimated vascular wall tension (WT)] in 27 basilar artery-dependent rabbits during experimental (artificial lumbar CSF infusion) intracranial hypertension.

View Article and Find Full Text PDF

Goal: Critical closing pressure (CrCP) is the arterial blood pressure (ABP) threshold, below which small arterial vessels collapse and cerebral blood flow ceases. Here, we aim to compare three methods for CrCP estimation in scenario of a controlled increase in intracranial pressure (ICP), induced by infusion tests performed in patients with suspected normal pressure hydrocephalus (NPH).

Methods: Computer recordings of directly-measured ICP, ABP, and transcranial Doppler cerebral blood flow velocity (CBFV), from 37 NPH patients undergoing infusion tests, were retrospectively analyzed.

View Article and Find Full Text PDF