Plant genetic engineering methods are critical for food security and biofuel production and to enable molecular farming. Here, we elucidated how polymeric high aspect ratio nanocarriers can enable DNA delivery to plants and transient expression. We demonstrated that a nanocarrier with 20 nm width, 80 nm length, and a polymer-to-DNA ratio of N/P = 3.
View Article and Find Full Text PDFNitrogen fertilizer delivery inefficiencies limit crop productivity and contribute to environmental pollution. Herein, we developed Zn- and Fe-doped hydroxyapatite nanomaterials (ZnHAU, FeHAU) loaded with urea (∼26% N) through hydrogen bonding and metal-ligand interactions. The nanomaterials attach to the leaf epidermal cuticle and localize in the apoplast of leaf epidermal cells, triggering a slow N release at acidic conditions (pH 5.
View Article and Find Full Text PDFLessons learned, methodologies, and application of tools that have been developed within the context of research on the environmental impacts, health, and safety of nanomaterials (nano-EHS) provide a solid foundation for research on nano/microplastics. In this communication, we summarize key discoveries obtained through major research efforts over the last two decades in the area of nano-EHS that are applicable for the study of micro- and nano-plastics (referred to here more generally as particulate plastics). We focus on how non-equilibrium particle transport processes affect: 1) bio-physico-chemical mechanisms of particle toxicity and determining dose-response relationships; 2) the potential for biouptake, bioaccumulation, translocation, trophic transfer and intergenerational effects of particulate contaminants; 3) extrapolations from laboratory experiments to complex systems and the impact of environmental transformations; 4) the formulation of functional assays as a basis for predicting the impacts of particulate contaminants in complex environments; 5) the relative importance of incidental particles compared with engineered particles and, 6) experience with data platforms, curation, and experimental design.
View Article and Find Full Text PDFLayered double hydroxide (LDH) nanoparticles enable foliar delivery of genetic material, herbicides, and nutrients to promote plant growth and yield. Understanding the foliar uptake route of nanoparticles is needed to maximize their effectiveness and avoid unwanted negative effects. In this study, we investigated how delivering layered double hydroxide ( = 37 ± 1.
View Article and Find Full Text PDF