Therapeutic advances in treating patients with multiple myeloma (MM), including novel immunotherapies, have improved the disease control, but it remains incurable. Although traditional immune check point inhibitors have shown limited clinical benefit, targeting alternative immune-inhibitory pathways may offer a novel way to address relapsed disease. Blockade of the immune regulator TIGIT was shown to enhance antitumor immunity in preclinical MM models.
View Article and Find Full Text PDFRadiation delivery at ultrahigh dose rates (UHDRs) has potential for use as a new anticancer therapeutic strategy. The FLASH effect induced by UHDR irradiation has been shown to maintain antitumour efficacy with a reduction in normal tissue toxicity; however, the FLASH effect has been difficult to demonstrate in vitro. The objective to demonstrate the FLASH effect in vitro is challenging, aiming to reveal a differential response between cancer and normal cells to further identify cell molecular mechanisms.
View Article and Find Full Text PDFCancers that are poorly immune infiltrated pose a substantial challenge, with current immunotherapies yielding limited clinical success. Stem-like memory T cells (TSCM) have been identified as a subgroup of T cells that possess strong proliferative capacity and that can expand and differentiate following interactions with dendritic cells (DCs). In this study, we explored the pattern of expression of a recently discovered inhibitory receptor poliovirus receptor-related immunoglobulin domain protein (PVRIG) and its ligand, poliovirus receptor-related ligand 2 (PVRL2), in the human tumor microenvironment.
View Article and Find Full Text PDFRecombinant cytokines have limited anticancer efficacy mostly due to a narrow therapeutic window and systemic adverse effects. IL18 is an inflammasome-induced proinflammatory cytokine, which enhances T- and NK-cell activity and stimulates IFNγ production. The activity of IL18 is naturally blocked by a high-affinity endogenous binding protein (IL18BP).
View Article and Find Full Text PDFBackground: Current therapy for osteosarcoma pulmonary metastases (PMs) is ineffective. The mechanisms that prevent successful immunotherapy in osteosarcoma are incompletely understood. We investigated the tumor microenvironment of metastatic osteosarcoma with the goal of harnessing the immune system as a therapeutic strategy.
View Article and Find Full Text PDF