Publications by authors named "G V Betageri"

The objective of this study was to develop proliposomal formulations for a poorly bioavailable drug, aliskiren hemifumarate (AKH). A solvent evaporation method was used to prepare proliposomes using different lipids. The lipids of selection were soy phosphatidylcholine (SPC), dimyristoylphosphatidylcholine (DMPC), and dimyristoylphosphatidylglycerol sodium (DMPG Na), stearylamine, and cholesterol in various ratios.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV)-infected individuals display an enhanced production of reactive oxygen species (ROS). This reduction of antioxidant capacity in host tissues has been related to the decrease in total levels of ROS scavengers such as glutathione (GSH). Prevention of opportunistic infections due to a weakened immune system is becoming a key strategy along with HIV elimination.

View Article and Find Full Text PDF

Celastrol (CL), a bioactive compound isolated from , has demonstrated bioactivities against a variety of diseases including cancer and obesity. However, its poor water solubility and rapid in vivo clearance limit its clinical applications. To overcome these limitations, nanotechnology has been employed to improve its pharmacokinetic properties.

View Article and Find Full Text PDF

The objective of the present study was to develop a proliposomal formulation to increase the oral bioavailability of dronedarone hydrochloride (dronedarone HCl) by enhancing solubility, dissolution, and/or intestinal absorption. Proliposomes were prepared by using solvent evaporation method. In this process, different ratios of drug, phospholipids, such as soy phosphatidylcholine (SPC), Phospholipon 90H, hydrogenated egg phosphatidylcholine (HEPC), and dimyristoyl phosphatidylglycerol (DMPG), and cholesterol were used.

View Article and Find Full Text PDF

Lipids have been extensively used in formulations to enhance dissolution and bioavailability of poorly water-soluble as well as water-soluble drug molecules. The digestion of lipid-based formulations, in the presence of bile salts, phospholipids, and cholesterol, changes the lipid composition in vivo, resulting in the formation of different colloidal phases in the intestine. Therefore, in vitro characterization and evaluation of such formulations are critical in developing a successful formulation.

View Article and Find Full Text PDF