J Biomater Sci Polym Ed
June 2001
The biofunctionality of osteoblasts cultured on DegraPol-foam, a biodegradable, elastic, and highly porous polyesterurethane-foam, was determined here to examine the possible use of this structure as bone repair material. Osteoblasts from rat tibia and from the cell line (MC3T3-E1) exhibited relatively high attachment and low doubling time that result in a confluent cell multilayer on the surface of the foam. They produced high concentrations of collagen type I and osteocalcin, and expressed increasing alkaline phosphatase activity.
View Article and Find Full Text PDFBone morphogenetic protein (BMP) is known to require a suitable carrier to induce ectopic bone formation in vivo. To evaluate the suitability of DegraPol-foam, a degradable, elastic, and highly porous polyesterurethane foam as carrier for BMP-induced bone formation, a fraction containing all the active BMPs (BMP cocktail) was combined with DegraPol-foam and implanted subcutaneously into rats. DegraPol-BMP scaffolds were found to induce osteogenesis 2 weeks after implantation as evidenced by morphological and biochemical observations.
View Article and Find Full Text PDFBackground/aim: In an attempt to overcome some of the problems encountered with the materials available for liver embolisation, we investigated a novel radiopaque polymer of the polyurethane family (Degra-Bloc).
Methods: Hepatic artery embolisation of one liver lobe using polyurethane was performed in 19 healthy pigs. Microcirculatory changes were assessed by laser Doppler flowmetry.
J Biomater Sci Polym Ed
February 2000
Histological and biochemical investigations were carried out in order to evaluate the chondrocyte compatibility of a recently developed biodegradable polyesterurethane-foam (DegraPol-foam). Therefore, cell adhesion, cell growth, and the preservation of chondrocyte phenotype was measured in rat xyphoid chondrocytes seeded on DegraPol-foam. Chondrocytes, isolated from xyphoids of adult male rats, exhibited relatively high cell adhesion on DegraPol-foam (about 60% of that found on TCPS).
View Article and Find Full Text PDFInt J Biol Macromol
September 1999
The present investigation was focused on the cell compatibility of recently developed biodegradable polyesterurethane-foam (DegraPol-foam) to chondrocytes and osteoblasts. Both chondrocytes and osteoblasts, isolated from adult male rats, exhibited relatively high cell adhesion on DegraPol-foam. Scanning electron microscopy (SEM) showed that cells grew on the surface and into the open cell pores of the foam.
View Article and Find Full Text PDF