Human epidermal growth factor receptor 2 (HER2) is amplified in ∼ 15-20% of human breast cancer and is important for tumor etiology and therapeutic options of breast cancer. Up-regulation of HER2 oncogene initiates cascades of events cumulating to the stimulation of transforming PI3K/AKT signaling, which also plays a dominant role in supporting cell survival and efficacy of HER2-directed therapies. Although investigating the underlying mechanisms by which HER2 promotes cell survival, we noticed a profound reduction in the kinase activity of a pro-apoptotic mixed lineage kinase 3 (MLK3) in HER2-positive (HER2+) but not in HER2-negative (HER2-) breast cancer tissues, whereas both HER2+ and HER2- tumors expressed a comparable level of MLK3 protein.
View Article and Find Full Text PDFMany types of human cancers having hyperactivated Wnt signaling display no causative alterations in known effectors of this pathway. Here, we report a function of TGIF in Wnt signaling. TGIF associates with and diverts Axin1 and Axin2 from the β-catenin destruction complex, therefore allowing β-catenin accrual.
View Article and Find Full Text PDFRecent studies demonstrated that overexpression of the molecular chaperone 14-3-3ζ protects the brain against endoplasmic reticulum (ER) stress and prolonged seizures. The 14-3-3 targets responsible for improved neuronal survival after seizures remain unknown. Here we explored the mechanism, finding that protein levels of the ER-stress-associated transcription factor C/EBP homologous protein (CHOP) were significantly higher in 14-3-3ζ-overexpressing mice.
View Article and Find Full Text PDFMembers of the Notch family of transmembrane receptors, Notch1-4 in mammals, are involved in the regulation of cell fate decisions and cell proliferation in various organisms. The Notch4 isoform, which is specific to mammals, was originally identified as a viral oncogene in mice, Int3, able to initiate mammary tumors. In humans, Notch4 expression appears to be associated with breast cancer stem cells and endocrine resistance.
View Article and Find Full Text PDFPHRF1 functions as an essential component of the TGF-β tumor suppressor pathway by triggering degradation of the homeodomain repressor factor TGIF. This leads to redistribution of cPML into the cytoplasm, where it coordinates phosphorylation and activation of Smad2 by the TGF-β receptor. In acute promyelocytic leukemia (APL), acquisition of PML-RARα is known to impede critical aspects of TGF-β signaling, including myeloid differentiation.
View Article and Find Full Text PDF