Publications by authors named "G Tosser-Klopp"

Unlabelled: Underutilized sheep and goat breeds can adapt to challenging environments due to their genetics. Integrating publicly available genomic datasets with new data will facilitate genetic diversity analyses; however, this process is complicated by data discrepancies, such as outdated assembly versions or different data formats. Here, we present the SMARTER-database, a collection of tools and scripts to standardize genomic data and metadata, mainly from SNP chip arrays on global small ruminant populations, with a focus on reproducibility.

View Article and Find Full Text PDF

Telomere-to-telomere (T2T) assemblies reveal new insights into the structure and function of the previously 'invisible' parts of the genome and allow comparative analyses of complete genomes across entire clades. We present here an open collaborative effort, termed the 'Ruminant T2T Consortium' (RT2T), that aims to generate complete diploid assemblies for numerous species of the Artiodactyla suborder Ruminantia to examine chromosomal evolution in the context of natural selection and domestication of species used as livestock.

View Article and Find Full Text PDF

In the last decade, several studies aimed at dissecting the genetic architecture of local small ruminant breeds to discover which variations are involved in the process of adaptation to environmental conditions, a topic that has acquired priority due to climate change. Considering that traditional breeds are a reservoir of such important genetic variation, improving the current knowledge about their genetic diversity and origin is the first step forward in designing sound conservation guidelines. The genetic composition of North-Western European archetypical goat breeds is still poorly exploited.

View Article and Find Full Text PDF

The African Goat Improvement Network (AGIN) is a collaborative group of scientists focused on genetic improvement of goats in small holder communities across the African continent. The group emerged from a series of workshops focused on enhancing goat productivity and sustainability. Discussions began in 2011 at the inaugural workshop held in Nairobi, Kenya.

View Article and Find Full Text PDF

By their paternal transmission, Y-chromosomal haplotypes are sensitive markers of population history and male-mediated introgression. Previous studies identified biallelic single-nucleotide variants in the SRY, ZFY and DDX3Y genes, which in domestic goats identified four major Y-chromosomal haplotypes, Y1A, Y1B, Y2A and Y2B, with a marked geographical partitioning. Here, we extracted goat Y-chromosomal variants from whole-genome sequences of 386 domestic goats (75 breeds) and seven wild goat species, which were generated by the VarGoats goat genome project.

View Article and Find Full Text PDF