We investigate the determination of electronic coupling between localized excitations (LEs) and charge-transfer (CT) excitations based on many-body Green's functions theory in the approximation with the Bethe-Salpeter equation (-BSE). Using a small molecule dimer system, we first study the influence of different diabatization methods, as well as different model choices within -BSE, such as the self-energy models or different levels of self-consistency, and find that these choices affect the LE-CT couplings only minimally. We then consider a large-scale low-donor morphology formed from rubrene and fullerene and evaluate the LE-CT couplings based on coupled -BSE-molecular mechanics calculations.
View Article and Find Full Text PDFWe present the open-source VOTCA-XTP software for the calculation of the excited-state electronic structure of molecules using many-body Green's function theory in the GW approximation with the Bethe-Salpeter equation (BSE). This work provides a summary of the underlying theory and discusses the details of its implementation based on Gaussian orbitals, including resolution-of-identity techniques and different approaches to the frequency integration of the self-energy or acceleration by offloading compute-intensive matrix operations using graphics processing units in a hybrid OpenMP/Cuda scheme. A distinctive feature of VOTCA-XTP is the capability to couple the calculation of electronic excitations to a classical polarizable environment on an atomistic level in a coupled quantum- and molecular-mechanics (QM/MM) scheme, where a complex morphology can be imported from Molecular Dynamics simulations.
View Article and Find Full Text PDFMany-body Green's functions theory within the GW approximation and the Bethe-Salpeter Equation (BSE) is implemented in the open-source VOTCA-XTP software, aiming at the calculation of electronically excited states in complex molecular environments. Based on Gaussian-type atomic orbitals and making use of resolution of identity techniques, the code is designed specifically for nonperiodic systems. Application to a small molecule reference set successfully validates the methodology and its implementation for a variety of excitation types covering an energy range from 2 to 8 eV in single molecules.
View Article and Find Full Text PDF