Publications by authors named "G Thorwarth"

Diamond like carbon (DLC) coatings have been proven to be an excellent choice for wear reduction in many technical applications. However, for successful adaption to the orthopaedic field, layer performance, stability and adhesion in physiologically relevant setups are crucial and not consistently investigated. In vitro wear testing as well as adequate corrosion tests of interfaces and interlayers are of great importance to verify the long term stability of DLC coated load bearing implants in the human body.

View Article and Find Full Text PDF

Diamond-like carbon (DLC) coatings are known to have extremely low wear in many technical applications. The application of DLC as a coating has aimed at lowering wear and to preventing wear particle-induced osteolysis in artificial hip joints. In a medical study femoral heads coated with diamond-like amorphous carbon, a subgroup of DLC, articulating against polyethylene cups were implanted between 1993 and 1995.

View Article and Find Full Text PDF

Coatings from diamond-like carbon (DLC) have been proven to be an excellent choice for wear reduction in many technical applications. However, for successful adaption to the total joint replacement field, layer performance, stability and adhesion in realistic physiological setups are quintessential and these aspects have not been consistently researched. In our team's efforts to develop long-term stable DLC implant coatings, test results gained from a simplified linear spinal simulator setup are presented.

View Article and Find Full Text PDF

A quantitative method using Rockwell C indentation was developed to study the adhesion of diamond-like carbon (DLC) protective coatings to the CoCrMo biomedical implant alloy when immersed in phosphate-buffered saline (PBS) solution at 37 degrees C. Two kinds of coatings with thicknesses ranging from 0.5 up to 16 microns were investigated, namely DLC and DLC/Si-DLC, where Si-DLC denotes a 90 nm thick DLC interlayer containing Si.

View Article and Find Full Text PDF

In this work the biocompatibility of osteosynsthesis plates treated with plasma immersion ion implantation (PIII) was tested using a rat model. Small rods (Ø 0.9 mm, and length 10 mm) prepared from different materials-pure Ti, anodised Ti, and two NiTi alloys (SE 508, and SM 495)-were implanted with oxygen by PIII to form a rutile surface layer and subsequently inserted into rat femurs, together with a control group of untreated samples.

View Article and Find Full Text PDF