We report the design conception, chemical synthesis, and microbiological evaluation of the bridged macrobicyclic antibiotic cresomycin (CRM), which overcomes evolutionarily diverse forms of antimicrobial resistance that render modern antibiotics ineffective. CRM exhibits in vitro and in vivo efficacy against both Gram-positive and Gram-negative bacteria, including multidrug-resistant strains of , , and . We show that CRM is highly preorganized for ribosomal binding by determining its density functional theory-calculated, solution-state, solid-state, and (wild-type) ribosome-bound structures, which all align identically within the macrobicyclic subunits.
View Article and Find Full Text PDFThe rise of antibiotic resistance causes a serious health care problem, and its counterfeit demands novel, innovative concepts. The combination of photopharmacology, enabling a light-controlled reversible modulation of drug activity, with antibiotic drug design has led to first photoswitchable antibiotic compounds derived from established scaffolds. In this study, we converted cystobactamids, gyrase-inhibiting natural products with an oligoaryl scaffold and highly potent antibacterial activities, into photoswitchable agents by inserting azobenzene in the N-terminal part and/or an acylhydrazone moiety near the C-terminus, yielding twenty analogs that contain mono- as well as double-switches.
View Article and Find Full Text PDFThe dearth of new medicines effective against antibiotic-resistant bacteria presents a growing global public health concern. For more than five decades, the search for new antibiotics has relied heavily on the chemical modification of natural products (semisynthesis), a method ill-equipped to combat rapidly evolving resistance threats. Semisynthetic modifications are typically of limited scope within polyfunctional antibiotics, usually increase molecular weight, and seldom permit modifications of the underlying scaffold.
View Article and Find Full Text PDFType IV secretion systems are protein secretion machineries that are frequently used by pathogenic bacteria to inject their virulence factors into target cells of their respective hosts. In the case of the human gastric pathogen , the cytotoxin-associated gene (Cag) type IV secretion system is considered a major cause for severe disease, such as gastric cancer, and thus constitutes an attractive target for specific treatment options against infections. Here, we have used a Cag type IV secretion reporter assay for screening a repurposing compound library for inhibitors targeting this system.
View Article and Find Full Text PDFThere is an alarming scarcity of novel chemical matter with bioactivity against multidrug-resistant Gram-negative bacterial pathogens. Cystobactamids, recently discovered natural products from myxobacteria, are an exception to this trend. Their unusual chemical structure, composed of oligomeric -aminobenzoic acid moieties, is associated with a high antibiotic activity through the inhibition of gyrase.
View Article and Find Full Text PDF