Hematopoietic stem cell transplantation (HSCT) is widely used to treat patients with life-threatening hematologic and immune system disorders. Current nontargeted chemo-/radiotherapy conditioning regimens cause tissue injury and induce an array of immediate and delayed adverse effects, limiting the application of this life-saving treatment. The growing demand to replace canonical conditioning regimens has led to the development of alternative approaches, such as antibody-drug conjugates, naked antibodies, and CAR T cells.
View Article and Find Full Text PDFIn this study, we evaluated the ability of the synthetic amphipathic helical peptide (SAHP), L-37pA, which mediates pathogen recognition and innate immune responses, to treat acute respiratory distress syndrome (ARDS) accompanied by diffuse alveolar damage (DAD) and chronic pulmonary fibrosis (PF). For the modeling of ARDS/DAD, male ICR mice were used. Intrabronchial instillation (IB) of 200 µL of inflammatory agents was performed by an intravenous catheter 20 G into the left lung lobe only, leaving the right lobe unaffected.
View Article and Find Full Text PDFObjective: Spinal cord injury (SCI) damages an individual's sensory, motor, and autonomic functions and represents a social emergency, mostly in developed countries. Accurate and timely diagnosis of the severity of SCI must be carried out as quickly as possible to allow time for drug and therapy testing in the early stages after injury.
Materials And Methods: Male Dark Agouti (DA) rats underwent spinal cord cryoinjury at the T13 level of the spine.
The acute respiratory distress syndrome (ARDS), secondary to viral pneumonitis, is one of the main causes of high mortality in patients with COVID-19 (novel coronavirus disease 2019)-ongoing SARS-CoV-2 infection- reached more than 0.7 billion registered cases. Recently, we elaborated a non-surgical and reproducible method of the unilateral total diffuse alveolar damage (DAD) of the left lung in ICR mice-a publicly available imitation of the ARDS caused by SARS-CoV-2.
View Article and Find Full Text PDFObjective: Spinal cord injury (SCI) is still one of the most challenging problems in neurosurgical practice. One of the major obstacles to neural regeneration following trauma is the formation of glial scarring and post-traumatic cysts which acts against proper growth of axons through the site of injury. Cerebrospinal fluid (CSF) delivery of bioactive agents into cystic cavities could represent a promising therapeutic strategy.
View Article and Find Full Text PDF