Publications by authors named "G Teeter"

Silicon's potential as a lithium-ion battery (LIB) anode is hindered by the reactivity of the lithium silicide (Li Si) interface. This study introduces an innovative approach by alloying silicon with boron, creating boron/silicon (BSi) nanoparticles synthesized via plasma-enhanced chemical vapor deposition. These nanoparticles exhibit altered electronic structures as evidenced by optical, structural, and chemical analysis.

View Article and Find Full Text PDF

electrochemical attenuated total reflection surface-enhanced infrared absorption spectroscopy (EC ATR-SEIRAS) is a valuable method for a fundamental understanding of electrochemical interfaces under real operating conditions. The applicability of this method depends on the ability to tune the optical and catalytic properties of an electrode film, and it thus requires unique optimization for any given material. Motivated by the growing interest in Sn-based electrocatalysts for selective reduction of CO to formate species, we investigate several Sn thin-film synthesis routes for the resulting SEIRA signal response.

View Article and Find Full Text PDF

Solar cells are essentially minority carrier devices, and it is therefore of central importance to understand the pertinent carrier transport processes. Here, we advanced a transport imaging technique to directly visualize the charge motion and collection in the direction of relevant carrier transport and to understand the cell operation and degradation in state-of-the-art cadmium telluride solar cells. We revealed complex carrier transport profiles in the inhomogeneous polycrystalline thin-film solar cell, with the influence of electric junction, interface, recombination, and material composition.

View Article and Find Full Text PDF

The performance of three-dimensional (3D) organic-inorganic halide perovskite solar cells (PSCs) can be enhanced through surface treatment with 2D layered perovskites that have efficient charge transport. We maximized hole transport across the layers of a metastable Dion-Jacobson (DJ) 2D perovskite that tuned the orientational arrangements of asymmetric bulky organic molecules. The reduced energy barrier for hole transport increased out-of-plane transport rates by a factor of 4 to 5, and the power conversion efficiency (PCE) for the 2D PSC was 4.

View Article and Find Full Text PDF

A trace amount of water in an electrolyte is one of the factors detrimental to the electrochemical performance of silicon (Si)-based lithium-ion batteries that adversely affect the formation and evolution of the solid electrolyte interphase (SEI) on Si-based anodes and change its properties. Thus far, a lack of fundamental and mechanistic understanding of SEI formation, evolution, and properties in the presence of water has inhibited efforts to stabilize the SEI for improved electrochemical performance. Thus, we investigated the SEI formed in a Gen2 electrolyte (1.

View Article and Find Full Text PDF