Our goal in this manuscript is to advance the assessment and treatment of monkey species in neuroscience research. We hope to begin a discussion and establish baseline data on how complications are identified and treated. We surveyed the neuroscience research community working with monkeys and compiled responses to questions about investigator demographics, assessment of animal wellbeing, treatment choices, and approaches to mitigate risks associated with CNS procedures and promote monkey health and wellbeing.
View Article and Find Full Text PDFOver the past 10-20 years, neuroscience witnessed an explosion in the use of non-invasive imaging methods, particularly magnetic resonance imaging (MRI), to study brain structure and function. Simultaneously, with access to MRI in many research institutions, MRI has become an indispensable tool for researchers and veterinarians to guide improvements in surgical procedures and implants and thus, experimental as well as clinical outcomes, given that access to MRI also allows for improved diagnosis and monitoring for brain disease. As part of the PRIMEatE Data Exchange, we gathered expert scientists, veterinarians, and clinicians who treat humans, to provide an overview of the use of non-invasive imaging tools, primarily MRI, to enhance experimental and welfare outcomes for laboratory non-human primates engaged in neuroscientific experiments.
View Article and Find Full Text PDFVEGF-B, a homolog of VEGF discovered a long time ago, has not been considered an important target in antiangiogenic therapy. Instead, it has received little attention from the field. In this study, using different animal models and multiple types of vascular cells, we revealed that although VEGF-B is dispensable for blood vessel growth, it is critical for their survival.
View Article and Find Full Text PDF