Med Sci Sports Exerc
December 2024
Introduction: Mountain ultramarathon induces extreme physiological stress for the human body. For instance, a decrease in total hemoglobin mass (Hbmass) due to severe hemolysis is historically suspected. Nevertheless, hematological changes following a 330-km mountain ultramarathon have to date never been investigated.
View Article and Find Full Text PDFAs more women engage in high-altitude activities, understanding how ovarian hormone fluctuations affect their cardiorespiratory system is essential for optimizing acclimatization to these environments. This study investigates the effects of menstrual cycle (MC) phases on physiological responses at rest, during and after submaximal exercise, at high-altitude (barometric pressure 509 ± 6 mmHg; partial pressure of inspired oxygen 96 ± 1 mmHg; ambient temperature 21 ± 2 °C and relative humidity 27 ± 4%) in 16 eumenorrheic women. Gas exchange, hemodynamic responses, heart rate variability and heart rate recovery (HRR) were monitored at low altitude, and then at 3375 m on the Mont Blanc (following nocturnal exposure) during both the early-follicular (EF) and mid-luteal (ML) phases.
View Article and Find Full Text PDFIn this paper, different concepts of reconfigurable RF-MEMS attenuators for beamforming applications are proposed and critically assessed. Capitalizing on the previous part of this work, the 1-bit attenuation modules featuring series and shunt resistors and low-voltage membranes (7-9 V) are employed to develop a 3-bit attenuator for fine-tuning attenuations (<-10 dB) in the 24.25-27.
View Article and Find Full Text PDFThis paper describes different variants of broadband and simple attenuator modules for beamforming applications, based on radio frequency micro electro-mechanical systems (RF-MEMS), framed within coplanar waveguide (CPW) structures. The modules proposed in the first part of this work differ in their actuation voltage, topology, and desired attenuation level. Fabricated samples of basic 1-bit attenuation modules, characterized by a moderate footprint of 690 × 1350 µm and aiming at attenuation levels of -2, -3, and -5 dB in the 24.
View Article and Find Full Text PDF