The vesicular stomatitis virus (VSV) RNA-dependent RNA polymerase consists of two viral proteins; the large (L) protein is the main catalytic subunit, and the phosphoprotein (P) is an essential cofactor for polymerase function. The P protein interacts with the L protein and the N-RNA template, thus connecting the polymerase to the template. P protein also binds to free N protein to maintain it in a soluble, encapsidation-competent form.
View Article and Find Full Text PDFThe active template for RNA synthesis for vesicular stomatitis virus (VSV) and other negative-strand viruses is the RNA genome in association with the nucleocapsid (N) protein. The N protein molecules sequester the genomic RNA and are linked together by a network of noncovalent interactions. We previously demonstrated that mutations predicted to weaken interactions between adjacent N protein molecules altered the levels of RNA synthesis directed from subgenomic ribonucleoprotein (RNP) templates.
View Article and Find Full Text PDFHuman respiratory syncytial virus (HRSV) is an enveloped RNA virus that assembles and buds from the plasma membrane of infected cells. The ribonucleoprotein complex (RNP) must associate with the viral matrix protein and glycoproteins to form newly infectious particles prior to budding. The viral proteins involved in HRSV assembly and egress are mostly unexplored.
View Article and Find Full Text PDFVesicular stomatitis virus (VSV) genomic RNA encapsidated by the nucleocapsid (N) protein is the template for transcription and replication by the viral polymerase. We analyzed the 2.9-A structure of the VSV N protein bound to RNA (T.
View Article and Find Full Text PDF