Publications by authors named "G T Senthil Andavan"

Aim: The main purpose of this experimental study was to compare whether modifications in flap design influence the post-operative outcome of third molar surgeries.

Materials And Methods: This study was designed as a randomized, single-blinded,split-mouth cross-over comparative study. The predictor variables were the flap type; Conventional Ward's was used to expose the tooth with a difference in the anterior release incision between the groups.

View Article and Find Full Text PDF

Background/aims: Post-translational modifications such as phosphorylation and dephosphorylation can finely tune the function of ion channels. Nav1.5 is the main sodium channel in human hearts and alternative splicing of the transcript generates two major splice variants, characterized by the presence (Q-pre) or absence (Q-del) of glutamine at position 1077.

View Article and Find Full Text PDF

Voltage-gated sodium channels produce fast depolarization, which is responsible for the rising phase of the action potential in neurons, muscles and heart. These channels are very large membrane proteins and are encoded by ten genes in mammals. Sodium channels are a crucial component of excitable tissues; hence, they are a target for various neurotoxins that are produced by plants and animals for defence and protection, such as tetrodotoxin, scorpion toxins and batrachotoxin.

View Article and Find Full Text PDF

The amiloride-sensitive epithelial sodium channel (ENaC) plays a prominent role in sodium uptake from alveolar fluid and is the major component in alveolar fluid clearance in normal and diseased lungs. The lectin-like domain of TNF-α has been shown to activate amiloride-sensitive sodium uptake in type II alveolar epithelial cells. Therefore, several synthetic peptides that mimic the lectin-like domain of TNF-α (TIP) were synthesized and their ability to enhance sodium current through ENaC was studied in A549 cells with the patch clamp technique.

View Article and Find Full Text PDF

A number of natural products from marine sponges, such as cyclodepsipeptides, have been identified. The structural characteristics of this family of cyclic peptides include various unusual amino acid residues and unique N-terminal polyketide-derived moieties. Papuamides are representatives of a class of marine sponge derived cyclic depsipeptides, including callipeltin A, celebesides A and B, homophymine A, mirabamides, microspinosamide, neamphamide A and theopapuamides.

View Article and Find Full Text PDF