Publications by authors named "G T Layer"

Respiratory complexes, such as cytochrome oxidases, are cofactor-containing multi-subunit protein complexes that are critically important for energy metabolism in all domains of life. Their intricate assembly strictly depends on accessory proteins, which coordinate subunit associations and cofactor deliveries. The small membrane protein CcoS was previously identified as an essential assembly factor to produce an active cbb-type cytochrome oxidase (cbb-Cox) in Rhodobacter capsulatus, but its function remained unknown.

View Article and Find Full Text PDF

The heme synthase AhbD catalyzes the last step of the siroheme-dependent heme biosynthesis pathway, which is operative in archaea and sulfate-reducing bacteria. The AhbD-catalyzed reaction consists of the oxidative decarboxylation of two propionate side chains of iron-coproporphyrin III to the corresponding vinyl groups of heme . AhbD is a Radical SAM enzyme employing radical chemistry to achieve the decarboxylation reaction.

View Article and Find Full Text PDF

In addition to morphology and tissue perfusion, diffusion-weighted imaging (DWI) is the third pillar of multiparametric diagnostics in oncology. Due to the strong correlation between the apparent diffusion coefficient (ADC) and cell count in hepatocellular carcinoma (HCC), it can be used as a surrogate marker for tumor cell quantity. Therefore, ADC effectively reflects the effects of cytoreductive treatment, such as transarterial chemoembolization (TACE) and systemic chemotherapy and becomes an important clinical marker for treatment response.

View Article and Find Full Text PDF

Background: Since 2003, a decline in the age-standardized incidence rates of colorectal cancer (CRC) has been observed in Germany. Nonetheless, one in eight cancer cases still affects the colon or rectum. The prognosis has improved, with the relative 5‑year survival rate for CRC being approximately 65%.

View Article and Find Full Text PDF

Coenzyme F is a nickel-containing tetrapyrrole, serving as the prosthetic group of methyl-coenzyme M reductase in methanogenic and methanotrophic archaea. During coenzyme F biosynthesis, the tetrapyrrole macrocycle is reduced by the nitrogenase-like CfbC/D system consisting of the reductase component CfbC and the catalytic component CfbD. Both components are homodimeric proteins, each carrying a [4Fe-4S] cluster.

View Article and Find Full Text PDF