Publications by authors named "G T Hansen"

Aim: Time-restricted eating (TRE) limits the time for food intake to typically 6-10 h/day without other dietary restrictions. The aim of the RESET2 (the REStricted Eating Time in the treatment of type 2 diabetes) trial is to investigate the effects on glycaemic control (HbA) and the feasibility of a 1-year TRE intervention in individuals with overweight/obesity and type 2 diabetes. The aim of the present paper is to describe the protocol for the RESET2 trial.

View Article and Find Full Text PDF

Climate change is altering the thermal habitats of freshwater fish species. We analyze modeled daily temperature profiles from 12,688 lakes in the US to track changes in thermal habitat of 60 lake fish species from different thermal guilds during 1980-2021. We quantify changes in each species' preferred days, defined as the number of days per year when a lake contains the species' preferred temperature.

View Article and Find Full Text PDF
Article Synopsis
  • Zebra mussels are invasive species that can change aquatic ecosystems and food webs, potentially increasing mercury levels in fish, yet their impact in inland lakes hadn't been previously studied.
  • In Minnesota lakes with zebra mussels, adult walleye and yellow perch showed mercury levels 72% and 157% higher, respectively, compared to lakes without them, with young fish also having elevated mercury concentrations.
  • These higher mercury levels in invaded lakes raise concerns for fisheries management and human health, especially since many walleye exceeded safe consumption thresholds more frequently than in uninvaded lakes.
View Article and Find Full Text PDF

Background: Humans are subjected to various environmental stressors (bacteria, viruses, pollution) throughout life. As such, an inherent relationship exists between the effect of these exposures with age. The impact of these environmental stressors can manifest through DNA methylation (DNAm).

View Article and Find Full Text PDF

The effectiveness of SARS-CoV-2 therapeutic antibodies targeting the spike (S) receptor-binding domain (RBD) has been hampered by the emergence of variants of concern (VOCs), which have acquired mutations to escape neutralizing antibodies (nAbs). These mutations are not evenly distributed on the RBD surface but cluster on several distinct surfaces, suggesting an influence of the targeted epitope on the capacity to neutralize a broad range of VOCs. Here, we identified a potent nAb from convalescent patients targeting the receptor-binding domain of a broad range of SARS-CoV-2 VOCs.

View Article and Find Full Text PDF