Publications by authors named "G T Barkema"

We investigate the dynamical critical behavior of the two-dimensional three-state Potts model with single spin-flip dynamics in equilibrium. We focus on the mean-squared deviation of the magnetization M (MSD_{M}) as a function of time, as well as on the autocorrelation function of M. Our simulations reveal the existence of two crossover behaviors at times τ_{1}∼L^{z_{1}} and τ_{2}∼L^{z_{2}}, separating three dynamical regimes.

View Article and Find Full Text PDF

Graphene is a two-dimensional carbon allotrope which exhibits exceptional properties, making it highly suitable for a wide range of applications. Practical graphene fabrication often yields a polycrystalline structure with many inherent defects, which significantly influence its performance. In this study, we utilize a Monte Carlo approach based on the optimized Wooten, Winer and Weaire (WWW) algorithm to simulate the crystalline domain coarsening process of polycrystalline graphene.

View Article and Find Full Text PDF

We investigate the dynamical critical behavior of the two- and three-dimensional Ising models with Glauber dynamics in equilibrium. In contrast to the usual standing, we focus on the mean-squared deviation of the magnetization M, MSD_{M}, as a function of time, as well as on the autocorrelation function of M. These two functions are distinct but closely related.

View Article and Find Full Text PDF

The exceptional properties of the two-dimensional material graphene make it attractive for multiple functional applications, whose large-area samples are typically polycrystalline. Here, we study the mechanical properties of graphene in computer simulations and connect these to the experimentally relevant mechanical properties. In particular, we study the fluctuations in the lateral dimensions of the periodic simulation cell.

View Article and Find Full Text PDF

Monte Carlo cluster algorithms are popular for their efficiency in studying the Ising model near its critical temperature. We might expect that this efficiency extends to the bond-diluted Ising model. We show, however, that this is not always the case by comparing how the correlation times τ_{w} and τ_{sw} of the Wolff and Swendsen-Wang cluster algorithms scale as a function of the system size L when applied to the two-dimensional bond-diluted Ising model.

View Article and Find Full Text PDF