Publications by authors named "G T Abernathy"

Direct band gap GeSn alloys have recently emerged as promising lasing source materials for monolithic integration on Si substrate. In this work, optically pumped mid-infrared GeSn lasers were studied with the observation of dual-wavelength lasing at 2187 nm and 2460 nm. Two simultaneous lasing regions include a GeSn buffer layer (bulk) and a SiGeSn/GeSn multiple quantum well structure that were grown seamlessly using a chemical vapor deposition reactor.

View Article and Find Full Text PDF

The study of all-group-IV SiGeSn lasers has opened a new avenue to Si-based light sources. SiGeSn heterostructure and quantum well lasers have been successfully demonstrated in the past few years. It has been reported that, for multiple quantum well lasers, the optical confinement factor plays an important role in the net modal gain.

View Article and Find Full Text PDF

Aim: Stroke has significant psychosocial impacts which contribute to burden for the person with stroke and affect stroke outcomes. The Psychosocial Working Group of the National Stroke Network (NSN) sought to survey current practices for assessing and supporting psychosocial needs within district health board (DHB) based stroke services to inform national service delivery initiatives.

Methods: The survey was conducted in 2021.

View Article and Find Full Text PDF

Humans are considered "superorganisms," harboring a diverse microbial collective that outnumbers human cells 10 to 1. Complex and gravely understudied host- and microbe-microbe interactions-the product of millions of years of host-microbe coevolution-govern the superorganism in almost every aspect of life functions and overall well-being. Abruptly disrupting these interactions via extrinsic factors has undesirable consequences for the host.

View Article and Find Full Text PDF

Group-IV alloy GeSn holds great promise for the high-performance optoelectronic devices that can be monolithically integrated on Si for near- and mid-infrared applications. Growth of GeSn using chemical vapor deposition technique with various Sn and Ge precursors has been investigated worldwide. To achieve relatively high Sn incorporation, the use of higher pressure and/or higher order Ge hydrides precursors were reported.

View Article and Find Full Text PDF