It has been demonstrated that sonic energy can be harnessed to enhance convection in Galvanic cells during cyclic voltammetry; however, the practical value of this approach is limited due to the lack of open volumes for convection patterns to develop in most batteries. This study evaluates the ability of ultrasonic waves to enhance diffusion in membrane separators commonly used in sandwich-architecture batteries. Studies include the measuring of open-circuit performance curves to interpret performances in terms of reductions in concentration overpotentials.
View Article and Find Full Text PDFThis paper demonstrates that nanospace engineering of KOH activated carbon is possible by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process. High specific surface areas, porosities, sub-nanometer (<1 nm) and supra-nanometer (1-5 nm) pore volumes are quantitatively controlled by a combination of KOH concentration and activation temperature. The process typically leads to a bimodal pore size distribution, with a large, approximately constant number of sub-nanometer pores and a variable number of supra-nanometer pores.
View Article and Find Full Text PDFIt is shown how appropriately engineered nanoporous carbons provide materials for reversible hydrogen storage, based on physisorption, with exceptional storage capacities (approximately 80 g H2/kg carbon, approximately 50 g H2/liter carbon, at 50 bar and 77 K). Nanopores generate high storage capacities (a) by having high surface area to volume ratios, and (b) by hosting deep potential wells through overlapping substrate potentials from opposite pore walls, giving rise to a binding energy nearly twice the binding energy in wide pores. Experimental case studies are presented with surface areas as high as 3100 m(2) g(-1), in which 40% of all surface sites reside in pores of width approximately 0.
View Article and Find Full Text PDFLow-energy (∼0.5 MeV) electrons arising from (60)Co γ-irradiation were used to create phosphorus-vacancy (PV) pairs and oxygen-vacancy pairs in Czochralski-grown Si. Positron annihilation data show that PV pairs anneal in two stages: the commonly observed stage around 125 °C, where one third of the pairs disappear with an activation energy of 0.
View Article and Find Full Text PDF