Extracellular vesicles (EVs) are heterogeneous entities secreted by cells into their microenvironment and systemic circulation. Circulating EVs carry functional small RNAs and other molecular footprints from their cell of origin, and thus have evident applications in liquid biopsy, therapeutics, and intercellular communication. Yet, the complete transcriptomic landscape of EVs is poorly characterized due to critical limitations including variable protocols used for EV-RNA extraction, quality control, cDNA library preparation, sequencing technologies, and bioinformatic analyses.
View Article and Find Full Text PDFBackground: Clinical trials are vital for developing new therapies but can also delay drug development. Efficient trial data management, optimized trial protocol, and accurate patient identification are critical for reducing trial timelines. Natural language processing (NLP) has the potential to achieve these objectives.
View Article and Find Full Text PDFMotivation: The integration of vast, complex biological data with computational models offers profound insights and predictive accuracy. Yet, such models face challenges: poor generalization and limited labeled data.
Results: To overcome these difficulties in binary classification tasks, we developed the Method for Optimal Classification by Aggregation (MOCA) algorithm, which addresses the problem of generalization by virtue of being an ensemble learning method and can be used in problems with limited or no labeled data.